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Figure 1: HOICraft is an in-situ authoring tool to support part-level Hand-Object Interaction (HOI) design. (A) During the design
process, developers must decide which parts should be interactive and which HOI design to apply. After design, discrepancies
often exist between the designers’ intentions and the users’ expectations, causing repeated design iterations. (B) We came up
with 5 representative HOI designs derived from formative study results and collected user experience data. Our authoring tool
enables in-situ VR design for rapid HOI prototyping with part-level detail. (C) By leveraging recommendation-based mapping,
we reduce the burden of manual HOI creation and provide a supportive and effective authoring environment.

Abstract
Hand–Object Interaction (HOI) is a key interaction component in
Virtual Reality (VR). However, designing HOI still requires manual
efforts to decide how object should be selected and manipulated,
while also considering user abilities, which leads to time-consuming
refinements. We present HOICraft, a VLM-based in-situ HOI au-
thoring tool that enables part-level interaction design in VR. Here,
HOICraft assists designers by recommending interactable elements
from 3D objects, customizing HOI design properties, and mapping
hand movement with virtual object behavior. We conducted a for-
mative study with three expert VR designers to identify five repre-
sentative HOI designs to support diverse user experiences. Building
upon preference data from 20 participants, we develop an HOI map-
ping module with in-context learning. In a user study with 12 VR
interaction designers, HOI mapping from HOICraft significantly
reduced trial-and-error iterations compared to manual authoring.
Finally, we assessed the usability of HOICraft, demonstrating its
effectiveness for HOI design in VR.
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1 Introduction
Hand-Object Interaction (HOI) is an essential component for expe-
riential realism in VR [41, 51]. Therefore, designing effective HOI in
VR is a key element for successful VR interaction design, as overall
VR experiences heavily depend on whether users can appropriately
manipulate virtual objects [6, 46]. Most VR applications empha-
size object-level manipulation, such as grasping and moving whole
objects [57]. Yet, everyday physical interactions are grounded in
part-level affordances [53, 82]. For example, while a camera is an
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object, interacting with it involves pressing the shutter button to
capture an image or rotating the zoom ring to adjust magnification.
This highlights that enabling fine-grained part-level interactions is
essential for achieving natural HOI in VR.

To support part-level interaction, prior work has largely concen-
trated on the mechanics of object motion—such as mesh cutting
and motion constraint definition in immersive authoring [56] or
transforming 3D meshes into articulated objects [64]. While these
methods improve defining how parts can move, they provide lim-
ited functionality guidance on how those parts should interact
according to the user’s action—namely, selection and manipula-
tion [6, 46]. To better understand this challenge, it is important
to consider how selection and manipulation are realized in prac-
tice. These components can be designed at different levels of fi-
delity, which directly influence the user experience. For instance,
physics-based manipulation can provide highly realistic interac-
tions [34, 35, 57], whereas gesture-based manipulation often em-
phasizes convenience [63, 81]. Similarly, object interactions may
involve direct [3, 58, 68] or animation-based manipulations [56, 76].
Accordingly, the design process becomes considerably more com-
plex at the part-level, because each part requires a different combi-
nation of selection and manipulation depending on its properties.
In practice, such decisions are often made based on the designer’s
prior experience and intuition, resulting in high effort and inconsis-
tent outcomes. Furthermore, designers must repeatedly determine
which HOI design best aligns with their intent, making the process
time-consuming. To streamline this process, in-situ authoring tools
have been leveraged by providing immediate feedback [20]. How-
ever, while these immersive environments facilitate evaluation, the
configuration of interaction mechanics itself remains manual and
step-by-step. This underscores the need for intelligent support in
part-level HOI design.

To this end, advancements in foundational models have opened
up new opportunities for supporting designers. Recent studies have
introduced LLM-powered authoring tools to assist in design work-
flows, such as prototyping [70, 89] and creativity support [47, 62, 78].
Moreover, Vision–Language Model (VLM) has begun to support
XR authoring by interpreting visual context and object seman-
tics [25, 37]. In this context, extending such AI-assisted authoring
to HOI design is appealing, as it can help designers select part-
level HOI designs that better reflect both object properties and
user needs, going beyond manual trial-and-error. Currently, these
foundation-model–based systems largely rely on the general knowl-
edge, making them well-suited for creative ideation. Yet, for HOI
design, which must be grounded in real-world user behaviors, such
knowledge can yield suggestions that appear plausible but fail in
practice. For instance, LLMs frequently recommend physics-based
HOI as the most “realistic” option across parts and contexts, even
though alternative interactions may provide a more natural fit.
Such mismatches highlight a critical limitation in supporting user-
dependent HOI design.

To fill these gaps, we introduce HOICraft, a VLM-based in-situ
authoring tool designed to support the part-level HOI design in VR.
By interpreting the designer’s intent together with object proper-
ties extracted by the VLM, HOICraft identifies which parts should
become interactive. In addition, HOICraft leverages LLMs with

in-context learning based on user preference data to support deter-
mining suitable HOI designs for each part. Furthermore, HOICraft
supports designers to customize HOI designs by providing detailed
properties. With all features integrated into the in-situ environ-
ment, designers can rapidly map, test, and refine HOI with reduced
manual effort, ultimately supporting more effective and purposeful
VR experiences.

We designed and evaluated HOICraft through three studies. First,
a formative study with three experts in commercial VR content
development identified practical requirements for HOI design. This
study revealed five representative HOI design criteria that cover
diverse user experience levels and contexts. In particular, we ob-
served that their approaches to selection (e.g., physics-, gesture-,
and contact-based) and manipulation methods (e.g., direct manipu-
lation and animation) varied considerably depending on the target
user experience and context. Second, a comparative study with 20
participants of varying VR experience levels examined these five
criteria. We collected both quantitative and qualitative preference
data, which informed the development of our HOI mapping module.
This module leverages an in-context learning framework to auto-
matically suggest suitable HOI mappings for interactive VR parts
based on general user preferences. Finally, we developed HOICraft,
an immersive AI-driven HOI authoring tool that enables designers
to efficiently create, test, and refine part-level HOI designs directly
in VR. To assess its effectiveness, we conducted a study with 12 VR
designers, comparing manual HOI mapping with our HOI mapping
module, and a usability test for the immersive design workflow and
authoring tool.

Our main contributions are as follows:
(1) We propose HOICraft, an AI-assisted in-situ authoring tool

that enables designers to create, test, and refine part-level
HOI in VR with reduced manual effort.

(2) We identify five representative HOI design criteria with di-
verse selection and manipulation strategies, derived from a
formative study with professional VR developers.

(3) We develop a user-preference–driven HOI recommendation
module that leverages in-context learning on empirical user
data, supporting AI-assisted co-design by suggesting practi-
cal HOI mappings for virtual objects.

2 Related Work
2.1 Hand-Object Interaction in VR
HOI refers to how humans use their hands to directly manipulate
objects, and it represents a primary way humans take action in
the world. Recent works have attempted to generate HOI in 3D
to advance VR applications [10, 11, 39, 88]. However, these efforts
primarily focus on synthesizing realistic HOI motions or visual-
izations, and often require additional coding or post-processing to
translate them into interactive behaviors. To support interactive VR
experiences, HOI design can be understood along two fundamental
dimensions: (1) how the hand selects object parts (selection), and (2)
how the selected part subsequently responds (manipulation) [6, 46].

Prior work on physics-based interaction typically attaches col-
liders to both the hand and virtual objects to support selection and
manipulation through collision [34, 35, 57]. The key factor in these
approaches is collision handling through simulating the virtual
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object’s behavior according to physics laws [55]. Another line of
research has explored gesture-based interaction, using grasping
gestures [81] or gesture imitation of objects [63] to retrieve and
manipulate them, as well as mapping user actions to customized
object behaviors [76]. While these approaches enrich the design
space, they do not address how different user groups may require
distinct interaction strategies. To bridge this gap, our study identi-
fies five representative HOI patterns through a formative study that
considered a broad range of users. These representative interactions
serve as a foundational design layer in our authoring tool, enabling
designers to configure HOI according to their intended goals and
target audiences.

2.2 AI-assisted Intelligent Workflow Support in
XR

AI models have the potential to reduce workflow burdens by in-
terpreting abstract design intents to provide tailored support. To
this end, prior work has explored automating content creation
through text-to-scene generation [2, 22, 24, 48, 74, 84] and text-to-
interaction through code synthesis [15, 31, 42, 49]. At the same
time, others have kept designers in the loop, where LLMs support
creativity by suggesting design alternatives [78, 85], providing in-
spiration [17, 30, 47, 62], and accelerating iterative prototyping to
reduce trial-and-error costs [70, 87, 89].

In XR, recent works have begun to integrate such AI-assisted
workflows into intelligent authoring systems. Previous works alle-
viate manual effort by supporting the creation of interactive sim-
ulations [32, 73] or by enabling programmable logic for physical
objects [61]. Building on these intelligent authoring approaches,
more recent systems incorporate LLMs to assist prototyping [70, 87]
and interpret multimodal inputs as authoring assistants [38, 79]. Re-
searchers also employed VLMs to better understand visual context
and object semantics, helping systems provide more knowledge-
able authoring support [25, 37]. Collectively, these advancements
align with the broader vision of “programmable reality,” where AI
and XR technologies converge to make the physical environment
increasingly configurable and interactive [72]. In this evolving con-
text, extending AI-assisted authoring to HOI design is appealing,
as designers also require intelligent support to configure how users
interact with these virtual parts in ways that match their design
intent.

However, relying solely on the general knowledge embedded
in current foundation models presents a challenge. HOI design
requires grounding in real-world user experiences, as people per-
ceive and value interactions differently depending on the context
and user abilities. Consequently, without such empirical ground-
ing, relying only on LLM knowledge risks generating interactions
that look plausible but fail in practice. To address this, we collect
user experience data on HOI designs and integrate it directly into
the recommendation process through an in-context learning ap-
proach [26], which has shown competitive performance without
parameter updates [21]. This enables the system to adapt its rec-
ommendations to better reflect actual user performance and needs.

2.3 In-situ Authoring in VR Applications
In VR, in-situ authoring tools offer a major advantage by enabling a
“What you see is what you get” environment for content creation [18,
19]. Such tools provide an intuitive interface providing immediate
feedback during the design process, reducing both interaction steps
and time required for creation [20].

Building on these advantages, prior work has explored di-
verse applications of in-situ authoring, such as animation [49, 75],
3D CAD modeling [4], and defining interactive behaviors. Sev-
eral studies have demonstrated that users can create, edit, and
evaluate 3D content directly in an in-situ environment [27, 60].
In addition, researchers integrated visual programming into in-
situ workflows, enabling objects to react dynamically to user in-
put [28, 33, 50, 71, 77, 86]. Similarly, Programming by Demonstra-
tion (PbD) approaches have been employed to support interaction
authoring [12, 66, 76].

Still, prior systems have largely focused on defining objects’
interactive behaviors at a coarse level (e.g., user or object). More-
over, despite the benefits of in-situ feedback, these approaches of-
ten require manual, step-by-step specification of behaviors, which
becomes increasingly labor-intensive for part-level interactions.
What remains underexplored is a fine-grained interaction author-
ing method to support part-level selection and manipulation. Here,
our work introduces an authoring framework for part-level HOI
mapping that captures designer intent and recommends suitable
interactive parts and HOI mappings. By integrating the intelligent
suggestions with immediate feedback, the proposed in-situ author-
ing makes less labor-intensive part-level HOI design.

3 Formative Study: Identifying Representative
HOI Design in VR

We conducted interviewswith professionals to investigate how part-
level HOI is currently designed in practice. Our findings revealed
key challenges in the process, underlying design space, and key
metrics influencing HOI design.

3.1 Participants
We recruited three professional VR developers (all male; aged 26 to
35) with varying VR interaction development experience (2–6 years,
𝑀 = 4, 𝑆𝐷 = 1.63) as participants. All participants were actively
engaged in creating VR applications, using the Unity engine as
their primary development environment. Table 1 summarizes the
demographics of the participants. The developers who participated
in the IRB-approved study received compensation for their time
with 50 USD.

Table 1: Demographics and experience information of for-
mative study participants.

ID Age Gender Experience Programming skills

P1 29 Male 4 years Unity engine, Blender
P2 35 Male 6 years Unity engine, Unreal engine
P3 26 Male 2 years Unity engine
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3.2 Interview Process and Analysis
Each participant engaged in a semi-structured interview lasting 2
hours. The study consisted of four stages: Introduction, Pre-Interview,
HOI Design Task & Follow-up Questions, and Post-Interview. During
the Introduction, we explained the study purpose and procedure
and obtained consent to record the interview. For Pre-Interview,
we explored typical workflows and challenges in designing part-
level HOI. We showed participants a 3D padlock mesh featuring
both rotation and translation mechanics, alongside its interactive
version (unlocked with a virtual hand) and asked them to describe
the process they would follow. In the HOI Design Task, participants
were asked to select an interactive part within a given object and
design HOI for that part across multiple VR contexts (e.g., game,
social, and training). We observed their decision-making process
and asked follow-up questions to better understand their reasoning.
During the Post-Interview, we asked participants to describe the
factors they considered, and the trade-offs they encountered in
their HOI designs. All interviews were recorded and transcribed
for analysis. We employed affinity diagramming [36] to extract key
themes and identify developers’ needs in designing part-level HOI
in VR.

3.3 Findings
3.3.1 Challenges in Part-Level HOI Creation in VR and Design Im-
plications. From our formative study, we identified 3 key challenges
in creating part-level HOI in VR.

Part-Level Decomposition (Challenge 1). Participants noted
that determining the appropriate interactive part for design inten-
tion is not straightforward. They often adjust decomposition levels
depending on the contextual information and repeatedly make sub-
jective decisions. Adjusting decomposition levels often leads to
inconsistency and cognitive burden. As P1 explained, “Complexity
tends to follow a pattern by context, but we often have to customize it
differently depending on the case”. Similarly, P2 noted, “It’s hard to
decide which parts to allow interaction with—it’s different for every
object, so it’s difficult to generalize”. P3 also admitted, “As I kept
working, I realized my approach to part decomposition wasn’t very
consistent”. To address this, we introduced the Part Prioritizer, which
leverages intent text to automatically select the most relevant parts
for interaction. By prioritizing these parts as a starting point, the
system ensures greater consistency across projects and reduces the
cognitive burden of manually deciding decomposition levels.

Designing HOI for Diverse Contexts (Challenge 2). Par-
ticipants noted that interactions that seemed appropriate during
design often failed in practice, requiring substantial redesign to
accommodate actual user abilities and contexts. P1 mentioned, “It
often turns out that the more realistic the interaction, the harder it
is for users to operate. So we redesign it differently” and P2 noted
“We implemented physical forces to match real-world mechanics, but
users couldn’t operate it properly—so we created a version that adjusts
automatically”. To support this, we designed HOI Mapper based on
user preference data to improve alignment with user expectations
and reduce the risk of repeated redesign.

Lack of Tool Support for Iterative HOI Refinement (Chal-
lenge 3). Designing part-level HOI often requires iterative refine-
ment, as developers must repeatedly adjust and test how each part

responds to actual user interaction. These trial-and-error cycles
are essential to ensure the interaction feels natural and usable in
context, but they can be highly time-consuming. Despite this, ex-
isting tools provide limited support for rapidly prototyping and
evaluating these interactions. P2 noted, “What takes a lot of time
is the trial and error—figuring out whether people can actually do it,
and whether this approach even works. We keep adjusting things over
and over, and that eats up a lot of time”. To address this, we adopted
in-situ environment that provides immediate feedback. This can
accelerate testing cycles, reduce trial-and-error attempts, and lower
the overall overhead of iterative refinement.

3.3.2 Observed Patterns for VR HOI Design. We identified recurring
patterns of HOI design, with diverse approaches to selection and
manipulation depending on the design context.

Selection. Participants described several techniques for how
the virtual hand selects a part, which generally fell into 2 main
approaches: physics-based selection and snapping-based selection.
With physics-based selection, colliders on each finger joint simulate
realistic grasping (P1-3). This approach was sometimes used to de-
liberately increase difficulty, such as stacking tasks (P1), but it often
caused accidental movements, making it unsuitable for standard
tasks (P1-2). Snapping-based selection includes two patterns: auto-
matic selection upon contact (“Like a doorknob that grabs itself when
the hand just gets close” (P2) and “Sometimes we make it snap easily
without fixing the exact pose” (P1)) and gesture-based selection (“For
handles like drawers or doorknobs, people naturally try to grab them,
so fixed gestures worked well” (P1)).

Manipulation. After selection, participants also differed in how
the part responds to user input. Some participants highlighted real-
time manipulation closely coupled with hand motion, “We wanted
the part to move exactly with the hand—like pulling a lever” (P3). In
contrast, another participant emphasized pre-defined animations
as a way to ease manipulation for novices, “In VR, inexperienced
users sometimes struggle even to grab and open a door. For such cases,
we design interactions where merely touching the doorknob triggers
the action” (P2).

3.4 Deriving an HOI Design Space
Based on observed patterns from Section 3.3.2, we derived a design
space for representative HOIs along two key dimensions: selection
method (collider-, gesture-, and contact-based) and manipulation
response (direct manipulation and animation). While these dimen-
sions yield six combinations, we exclude the physics–animation
case, since physics-based selection is inherently collider-driven and
produces physical behaviors that conflict with predefined anima-
tions. Our design space consists of five representative HOI methods
as shown in Figure 2.

Physics-basedManipulation (PM). Interaction occurs through
colliders attached to both the hand and the object, relying on physics
simulation for selection and manipulation. For example, the user
must physically move the hand to the opposite side of a hinged
door’s handle to apply a pulling force. Light contact pushes the
object away via collision forces.

Gesture-based Manipulation (GM). Users acquire an object
by performing a specific gesture. Once acquired, the object continu-
ously follows the hand within a predefined motion range while the
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Figure 2: Representative HOI design methods for virtual objects from the formative study. PM refers to physics-based ma-
nipulation. GM and GA represent gestured-based manipulation and animation accordingly. CM and CA mean contact-based
manipulation and animation.

gesture is maintained, and it is released when the gesture breaks, a
threshold is crossed, or tracking is lost.

Gesture-based Animation (GA). Same gesture-based acqui-
sition as GM, but the object plays a predefined animation (e.g.,
opening/closing the door) instead of continuous hand mapping.
Each animation is triggered once per gesture cycle for clarity and
consistency.

Contact-based Manipulation (CM). Objects are acquired by
entering the trigger region, without requiring a gesture. The object
then follows the hand within a predefined motion range until the
hand exits the trigger. Unlike PM, the object is kinematically driven
by the hand upon contact, behaving as if magnetically attached. For
instance, touching a door handle instantly couples the door to the
hand, causing it to mirror the hand’s trajectory exactly, regardless
of pulling force.

Contact-based Animation (CA). Same contact-based acquisi-
tion as CM, but the object responds with a predefined animation
upon entry, as inGA. Animations are triggered only once per out–in
cycle, preventing unintended repetition. This ensures that playback
reflects deliberate user intent.

3.5 Key Metrics Influencing HOI Design
Our formative study revealed that VR developers made their HOI
design decisions considering diverse contexts. From these observa-
tions, we identified four main design metrics (Figure 3) that shaped
the decision: Usability, Efficiency, Realism, and Challenge. In addi-
tion to these developer-driven factors, we also add user Preference
as an additional metric since it serves as a base guideline when
designers do not have a clear design intent.

Usability. Participants emphasized that interactions should feel
smooth and comfortable, particularly for novice users or exhibition

settings where realistic manipulation is often impractical. In these
cases, they simplified the design so that actions could be triggered
with minimal effort—for example, selecting without explicit ges-
tures (P1, P2) or automatically triggering when the hand touched
the object (P2). As one participant explained, “We don’t always
replicate real-world interactions exactly. Sometimes realism makes
manipulation harder” (P1).

Efficiency. Participants emphasized that users should be able
to complete the task in a timely and reliable manner. “Even if the

Figure 3: Key metrics for HOI design. The metrics reflect
diverse design intents of different user types and contexts.
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interaction feels less realistic, we usually change it so that users can
still perform the task. It’s more important that it works, even if the
experience is slightly worse” (P2). This was particularly critical in
contexts such as exhibitions or training applications (e.g., VR factory
safety simulations), where ensuring reliable task completion was
prioritized.

Realism. In training contexts, realism was seen as essential,
requiring accurate reproduction of real-world actions: “In training
scenarios, we tried to consider all possible realistic operations and
movements that a user would perform with the real object” (P2). “The
goal in designing for training was to closely replicate the real-world
functionality of the object” (P3). This aligns with prior work that
highlights realism as a key dimension in VR design [7, 44, 65, 69].

Challenge. In gaming, experienced VR users often preferred
more demanding interactions, so participants deliberately raised
the interaction threshold: “Experienced VR users tend to prefer more
diverse interactions” (P1). “In VR games, users are generally familiar
with the environment, so even if we set the interaction threshold a
bit higher, they can handle it well” (P2). We refer to this factor as
Challenge, following the terminology used in the Game Experience
Questionnaire [40] which emphasizes not only difficulty but also
the accompanying sense of effort, learning, and accomplishment.

Preference. Beyond these developer-driven factors, we also con-
sidered users’ direct preferences for different HOI designs. This
factor reflects the user’s subjective evaluation of how well HOI
aligns with their expectations and comfort. We treated preference
as a key metric because it can serve as a guideline in cases where
developers may not have a clear design intention, providing insight
into which HOI designs users find most acceptable.

4 Study 1: Empirical Data Collection of HOI
Design Key Metrics

We conducted a user study on the representative HOI de-
signs (Sec 3.4) to examine how developer-identified key met-
rics (Sec 3.5) align with users’ actual perceptions at the part level.
This empirical data informed the formulation of the HOI mapping
module (Sec 5.3). The study comprised two main tasks with distinct
objectives.

Task 1 (User Experience Comparison). Participants provided
both Preference rankings and Likert-scale ratings (Usability and
Realism) for the HOI designs. This task captured users’ subjective
perceptions of how different designs were experienced.

Task 2 (Performance Comparison). Participants performed a
direct manipulation task to assess Efficiency (i.e., timely and reli-
able task completion). Because this task required fine control and
adjustment, it also revealed participants’ perception of Challenge.
Accordingly, we compared three selection methods combined with
direct manipulation (PM, GM, CM), while excluding animated ma-
nipulations (GA, CA) whose fixed motions limit the control and
adjustment.

Through these tasks, we were able to identify how different HOI
designs corresponded to each key metric across various object-part
pairs.

Figure 4: Selected 13 object–part pairs for user experience
data collection in Study 1. Green bounding boxes show collid-
er/trigger regions defined based on themesh size of each part.
Pink arrows indicate embedded motion constraints, which
we predefined according to the natural behavior of each ob-
ject (straight arrows for translation and curved arrows for
rotation).

4.1 Object-Part Dataset
To construct a representative object–part dataset, we referred to
HOI datasets in both computer vision [8, 9, 29, 43, 53, 82] and
VR [41, 63, 81]. We selected 20 everyday objects covering diverse
characteristics (e.g., affordances and size), while prioritizing part-
level interaction over static or deformable ones. We then generated
object–part candidates based on expert decomposition results in
HOI Design Task (Sec 3.2) and refined them to fit the study duration,
excluding overly similar interactions (e.g., pulling the trigger of a
sprayer vs. a drill). A total of 13 object-part pairs are selected as
shown in Figure 4.

4.2 Implementation
The study was developed using Unity 2022.3.43f1 and ran on a
Meta Quest 3 HMD connected to a PC (Intel i9-13900K CPU, RTX
4070 Ti GPU) via a Link cable. We used the Meta Interaction SDK1

1https://developers.meta.com/horizon/documentation/unity/unity-isdk-interaction-
sdk-overview

https://developers.meta.com/horizon/documentation/unity/unity-isdk-interaction-sdk-overview
https://developers.meta.com/horizon/documentation/unity/unity-isdk-interaction-sdk-overview
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and Meta Hand Tracking API2 to obtain 3D joint poses and hand
state information. We implemented all HOI designs on top of the
aforementioned APIs, Unity’s built-in PhysX engine for physics-
based behaviors, and kinematic mapping for gesture- and contact-
based variants.

4.3 Study Setup
We recruited 20 participants (8 female), aged 19 to 33 (𝑀 = 25.15,
𝑆𝐷 = 3.91). Based on a demographics survey, 7 participants were
identified as beginners in terms of VR experience (3 with no prior
experience and 4 with less than 1 hour), 9 participants as inter-
mediate users (1–10 hours), and 4 participants as advanced users
(one with 10–100 hours and three with more than 100 hours of
experience). Regarding hand-tracking experience, 10 participants
reported no prior experience, while 10 participants reported having
some experience. In terms of handedness, 19 participants reported
being right-handed and 1 participant reported being left-handed.
The study was approved by the IRB and participants received com-
pensation for their time with 30 USD.

The study consisted of three phases: (1) introduction and training,
(2) the user experience comparison task using a think-aloud protocol
to capture ranking reasoning, and (3) the performance comparison
task followed by a semi-structured interview. The study lasted for
2 hours in total.

4.3.1 Introduction and Training Session. We collected demographic
information and introduced the five HOI designs to ensure partici-
pants understood how each worked. A training session followed
using a practice object (not included in the main tasks) configured
with all HOI designs side by side, allowing participants to directly
compare them. Training continued until participants reported they
could reliably distinguish among them, usually within five minutes.

4.3.2 Task 1: User Experience Comparison. The first task involved
pairwise comparisons of HOI designs, as adopted in prior work [67],
which helps reduce cognitive load compared to evaluating all de-
signs simultaneously. In each stage, we showed participants two
versions of the same part with different HOI designs, and asked
them to choose their preferred design, where they could skip if the
comparison was too difficult (Figure 5-A). Here, participants could
freely manipulate and compare the two versions, and we displayed
the applied HOI design above each version to ensure they clearly
understood how to perform the interaction.

All possible pairs (5𝐶2 = 10) were presented in randomized order.
Both the sequence of pairs and the within-pair presentation (A/B vs.
B/A) were counterbalanced to control for order effects. After com-
pleting all pairwise comparisons, the overall HOI design ranking
was computed using the round-robin row-sum score procedure [23].
Then, we showed participants the ranking and allowed them to
adjust it if desired (Figure 5-B). We recorded the final confirmed
ranking as Preference data. Following this, we gathered ratings
on a 7-point Likert scale related to key metrics: Usability (ease of
use: “This interaction is easy”, learnability: “I learned this interac-
tion quickly” ) and Realism (realism: “This interaction is realistic” ).

2https://developers.meta.com/horizon/documentation/unity/unity-handtracking-
overview

Figure 5: Task 1 overview. (A) Participants compared HOI
designs in pairwise trials. (B) After completing all compar-
isons, they reviewed and adjusted the ranking. Finally, they
rated each HOI on Likert scales and explained their choices
through think-aloud.

We also collected the reasons behind their preference order. This
procedure was repeated for all 13 object-part pairs.

4.3.3 Task 2: Performance Comparison in Direct Manipulation. The
second task involved matching the target state, manipulating parts
to align them with a red-highlighted target state (Figure 6-A). To
minimize perceptual errors, the target was overlaid directly on the
corresponding part. Participants performed tasks on four multi-part
objects covering diverse interaction types (Figure 6-B), with certain
parts restricted when their motions lacked sufficient salience (e.g.,
in-place rotation).

Before starting the task, we showed participants the target state
to ensure familiarity so that the comparison across HOI designs was
not influenced by target understanding time. Then, we instructed
them to complete the task as quickly and accurately as possible. To
avoid learning effects, the order of the three HOI designs (PM, GM,
CM) was counterbalanced across participants (3! = 6 permutations).
Each participant completed two sessions with randomized object
order, and performance measures were averaged across sessions to
mitigate accidental errors. Each HOI design was tested 8 times per
participant (4 objects × 2 sessions).

We measured task completion time as the interval between the
first and last part manipulation. In addition, we continuously logged
the manipulated part’s position at each frame to calculate the rever-
sal count, which is the number of times the error distance changed

Figure 6: Task 2 overview. (A) Participants matched object-
part pairs to target states using different HOI designs (PM,
GM, CM), followed by a post interview. (B) We used a mi-
crowave (handle, dial), a coffee machine (button, portafilter),
a cabinet (drawer, door), and a padlock (shackle). Red-colored
parts indicate the target state to be achieved.

https://developers.meta.com/horizon/documentation/unity/unity-handtracking-overview
https://developers.meta.com/horizon/documentation/unity/unity-handtracking-overview
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direction while approaching the target. A lower reversal count in-
dicates greater stability in the HOI design, whereas a higher count
suggests repeated re-adjustments. Finally, the last recorded position
of manipulated parts was used to compute the error deviation from
the target state. These measures were used to compare Efficiency
across HOI designs. After completing the task, we conducted a semi-
structured interview to explore participants’ subjective impressions
of Challenge in the HOI designs.

4.4 Results
4.4.1 Data Analysis Procedure. For both tasks, as the data did not
meet the assumptions of normality and homoscedasticity, we ap-
plied the Friedman test as a non-parametric method. If the Friedman
test was significant, Wilcoxon signed-rank tests were conducted
for all method pairs, with the false discovery rate controlled using
the Benjamini–Hochberg procedure.

4.4.2 Overall Results for Task 1. Both Preference rankings and Lik-
ert ratings (Usability, Realism) revealed clear part-specific varia-
tions, indicating the need for HOI mapping to each part rather than
applying a uniform design. As shown in Table 2, except parts 12
and 13, there is a significant difference between HOI designs across
parts (2− 5, 8, 10− 11;𝑝 < .001, 6− 7;𝑝 < .005, 1, 9;𝑝 < .05). Further
analysis using the pairwise Wilcoxon signed-rank test revealed
that the dominant HOI design varied by part, indicating that no
single technique was consistently superior. Similar part-specific
variations were also observed in the Likert ratings collected during
Task 1, with detailed statistics provided in Appendix B.

Table 2: Friedman test results with Kendall’s W and ranking
significance. Methods were ordered by their mean score (for
Likert scales, higher values indicate better performance; for
rank data, lower mean ranks indicate better performance).
We then derived a statistically informed grouping: methods
not significantly different were grouped together (“=”), while
significant differences led to a new, lower-ranked group (“>”).
If the Friedman test was not significant, all methods were
treated as tied. Significance levels are indicated: * 𝑝 < 0.05, **
𝑝 < 0.01, *** 𝑝 < 0.005, **** 𝑝 < 0.001).

𝑛 = 20, 𝑘 = 5
Part Kendall’s W Friedman_sig Ranking_sig
1 0.1290 p=0.035* CA=CM=GA>GM=PM
2 0.2365 p<0.001**** CM=CA>GM=GA=PM
3 0.4010 p<0.001**** CM=GM>PM=CA=GA
4 0.2490 p<0.001**** CM=CA>GM=GA=PM
5 0.3950 p<0.001**** CM>GM=CA>GA=PM
6 0.1980 p=0.003*** CM=GM=CA>GA=PM
7 0.1955 p=0.003*** CM=CA=PM>GM=GA
8 0.2295 p=0.001*** CA=GM=GA=CM>PM
9 0.1575 p=0.013* CM=GM=PM=CA>GA
10 0.5365 p<0.001**** CM=PM>GM=CA>GA
11 0.3100 p<0.001**** CM=CA>GA=PM=GM
12 0.0980 p=0.097 PM=CM=GM=CA=GA
13 0.0265 p=0.713 CM=CA=GM=GA=PM

Based on participants’ think-aloud explanations, their prefer-
ences were strongly shaped by real-world habits of object manip-
ulation. Gesture-based methods were favored when the required
gesture aligned with everyday use (e.g., grasping a microwave han-
dle to open it), but were seen as inconvenient or unrealistic when
they conflicted with natural habits (e.g., rotating a globe with a
prescribed gesture rather than simply spinning it by hand). Im-
portantly, these habitual patterns were not arbitrary but closely
reflected object-part characteristics such as affordances, size, and
motion constraints. Furthermore, participants preferred direct ma-
nipulation for fine-grained or continuous control (e.g., scissors,
sprayer, dials), while animation was valued for comfort and clear
state transitions in large or discrete motions (e.g., doors, laptop
lids). These findings suggest that preferences for HOI designs are
fundamentally grounded in part characteristics, which enables us
to generalize to new parts by aligning them with similar ones in
our dataset (Sec 5.3.2).

4.4.3 Overall Results for Task 2. Figure 7 illustrates the overall
results for Task 2. We compared task completion time, error ra-
tio, and reversal count as key indicators of Efficiency across HOI
designs. Overall, the results showed that PM consistently under-
performed compared to the others, suggesting that in terms of Effi-
ciency the practical choice lies between GM and CM. In addition,
post-interview findings revealed that Challenge was primarily dif-
ferentiated between GM, which required mastery of gestures, and
PM, which demanded fine control under unpredictable responses.

A Friedman test for task completion time revealed significant dif-
ferences across conditions (𝑝 < .001). Follow-up Wilcoxon signed-
rank tests showed that PM was slower than both GM and CM
(𝑝 < .001), and that CM was faster than GM (𝑝 < .05), as shown in
Figure 7-A. Error ratio wasmeasured by normalizing final positional
and rotational deviations and combining them with equal weights.
Figure 7-B shows that no significant differences were observed
across HOI designs (overall error ratio: 𝑝 = .157). This suggests that
participants were willing to trade speed for accuracy, achieving
comparable precision across conditions even when task completion
times differed. In particular, PM exhibited greater variability, as fine
control was often difficult. For example, participants sometimes
resorted to “slamming” the microwave door shut rather than align-
ing it precisely. As shown in Figure 7-C, reversal counts differed
significantly across HOI designs (𝑝 < .001). Pairwise comparisons
showed that PM produced significantly more reversals than both
the GM and CM (𝑝 < .001), and that GM produced more reversals
than CM (𝑝 < .05). This latter difference was most notable for parts
lacking clear grasping affordances, such as the drawer’s bottom
door without a distinct handle.

Building on the quantitative findings where PM already showed
lower Efficiency, post interviews highlighted more nuanced trade-
offs between GM and CM. GM was valued for precise intent align-
ment (P1,P10–11,P13–14,P16,P19), though some noted physical
fatigue (P6–7,P19). CM was consistently described as easy and
comfortable (P1–2,P9,P12), yet prone to unintentional manipula-
tion (P15–16,P18–19). Overall, these findings highlight a trade-off:
GM offers precision and control, whereas CM provides ease and
comfort, suggesting that the appropriate choice depends on the
primary design focus.
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Figure 7: Task performance comparison across Physics-(PM) , Gesture-(GM) , and Contact-(CM) based manipulation. The
results include (A) task completion time, (B) overall error ratio, and (C) total reversal counts: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.005,
**** 𝑝 < 0.001.

Participants also described different forms of Challenge, primar-
ily contrasting GM and PM. For GM, the challenge stemmed from
developing mastery, as participants felt they needed practice to
reliably perform gestures: “I had to get used to which gesture to use
and how to do it well” (P9), “The more I refined the gesture, the better
the outcome seemed” (P17). For PM, the difficulty lay in fine physical
control and unpredictable responses: “Fine control was hard and I
had to carefully adjust the force” (P1, P6, P8), “The outcome was unex-
pected but when it finally matched, it felt rewarding” (P14, P20). These
responses suggest that GM elicited a skill-based, mastery-oriented
challenge, while PM posed a control-based, execution-oriented
challenge. By contrast, CM was rarely described as challenging,
reinforcing its role as the most comfortable method.

4.5 System Design Implications
Task 1 showed that Preference, Usability, and Realism varied across
object parts, motivating part-level preference mapping. Task 2 fur-
ther highlighted binary trade-offs: GM vs. CM for Efficiency, and
GM vs. PM for Challenge. We formulate our HOI mapping module
based on these findings, which supports both ranking-based and
binary-decision modes (Sec. 5.3.2).

Our study further revealed opportunities to refine HOI designs
through adjustable parameters. We initially set default parameter
values and refined them through a pilot study to ensure baseline
usability. Nonetheless, participants reported variations in comfort
and control, indicating individual differences in how these defaults
were experienced. Their feedback often pointed to specific limita-
tions, such as unintended movements in physics-based manipula-
tion, premature deselection in gesture-based methods, or unnatural
step sizes in animation. Although expressed as user frustrations
rather than explicit design requests, these observations highlighted
the need for incorporating customization capability for the user.
Thus, we added a customization module that enables designers to
configure factors such as resistance, gesture set, release distance,
animation mode, and step angle, as detailed in Section 5.2.

5 HOICraft
We developed HOICraft, a VLM-based in-situ authoring tool that
supports designers to create part-level interactive objects in VR,
guided by their intended interaction goals. HOICraft consists of
three main modules (see Figure 8). These modules include (1) in-
teractive part selection, (2) HOI design customization, and (3) HOI
design mapping.

We offered these features in an in-situ environment to support
rapid prototyping with refinement capability. The authoring work-
flow begins with the user providing a target 3D object (which is
segmented into parts, labeled with part names, and pre-defined
with motion constraints) and specifying a design intent as text (the
intended use of the object and target user experience).

The hardware configurations and VR deployment used in HO-
ICraft were consistent with those detailed in Section 4.2. The system
incorporates a multimodal LLM backend (GPT-4o [1]), leveraging
its built-in vision–language capabilities for object analysis. The
detailed system prompts used in HOICraft are provided in Appen-
dix C.

5.1 Interactive Part Selection
Before defining HOI designs, designers must first decide which
parts of an object should be interactive. HOICraft supports this
process by analyzing object characteristics and the intended use,
generating prioritized recommendations of interactive parts, and
allowing designers to override them.

5.1.1 Object Analyzer. This module combines visual inputs and
part hierarchies, using a VLM to infer interaction types (e.g., rotate,
slide) and functional affordances (e.g., take a picture, change magni-
fication) for each part. Here, visual input is obtained by normalizing
the object’s scale to a reference cube and capturing multi-view im-
ages with 8 cameras (4 above and 4 below) placed at 90-degree inter-
vals around the object center, ensuring full coverage and consistent
scale. These raw inputs are then transformed into a structured
representation, [object–part–interaction–affordance], which
serves as the basis for the following modules. Since VLM inference
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Figure 8: HOICraft systemworkflow. Given a 3D object and a design intent, the system first analyzes the 3D object to recommend
interactive parts. Then, designers customize HOI properties (e.g., physics, gestures, and animation) and finalize the mapping
through ranked recommendations.

is costly, it is performed only once at the start, and the representa-
tion is leveraged by subsequent LLM modules to support real-time
reasoning throughout the authoring pipeline.

5.1.2 Part Prioritizer. This module analyzes the given intended
use of the object together with part information obtained from
Object Analyzer and produces a prioritized list of all parts, ranking
them by their relevance to the intended use. As the number of parts
increases, manually selecting them becomes increasingly difficult.
Therefore, the system leverages the LLM to recommend an initial
number of interactive parts, providing designers with a suitable
starting point. The prioritized list and recommended number of
interactive parts are then passed to the subsequent Interactive Part
Selection process.

5.1.3 Interactive Part Selection. Designers can then refine the rec-
ommended interactive parts in two ways: (1) by specifying a desired
number of interactive parts, in which case the system automatically
activates the corresponding top-ranked parts from the list, or (2) by
manually selecting parts to activate when the priority does not fully
match their intent. This dual approach balances between design
automation and flexibility.

5.2 HOI Design Customization
Drawing on the findings from Section 4.5, we define key parameters
that allow designers to customize HOI designs. The resulting cus-
tomized configuration is then integrated into the final HOIMapping
process described in the next section.

5.2.1 Physics. Designers can adjustResistance, linked to the rigid
body’s resistance value. Here, higher values mean more force to
continue movement, and lower values produce a more responsive
feel (Figure 8-C-1).

5.2.2 Gesture. For gesture criteria, designers can adjust two key
parameters (Figure 8-C-2):

(1) Allowed Gesture Set: Designer can choose the type of
gesture to acquire and maintain control (Grab, Pinch, Curl,
Point, and Open). We referred to a gesture set from prior
taxonomies [45], design guidelines [80], and Meta’s default
API3,4. These gestures serve as selection triggers. Compound
gestures that occur only after acquisition (e.g., squeeze and
swipe) were excluded since they address post-selection ac-
tions rather than the selection itself.

(2) Release Distance: Designer can define when control is
released as the hand moves away (small values for quick
release, large values for sustained control). Release distance is
defined relative to the object’smesh boundary. At acquisition,
the system records the part’s trigger center as an anchor. The
distance between this anchor and the user’s index fingertip
is continuously measured and normalized to the part’s scale.
When this distance exceeds the threshold set by the designer,
control is released.

5.2.3 Animation. For animating given 3D objects, designers can
configure two parameters (Figure 8-C-3):

(1) Animation mode: For constrained parts (e.g., doors with
open–close limits), designers can choose between Single
mode, which allows the part to move in one-way direction
to the motion range limit (e.g., from fully closed to fully
open), and Loop mode, which allows the part to move back
and forth.

3https://developers.meta.com/horizon/documentation/unity/unity-isdk-detecting-
poses
4https://developers.meta.com/horizon/documentation/unity/unity-isdk-grabbing-
objects

https://developers.meta.com/horizon/documentation/unity/unity-isdk-detecting-poses
https://developers.meta.com/horizon/documentation/unity/unity-isdk-detecting-poses
https://developers.meta.com/horizon/documentation/unity/unity-isdk-grabbing-objects
https://developers.meta.com/horizon/documentation/unity/unity-isdk-grabbing-objects
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(2) Step angle: For unconstrained parts (e.g., a 360° dial), inter-
actions progress in increments of the specified angle, sup-
porting both coarse and fine adjustments.

5.3 HOI Design Mapping
Figure 9 illustrates the detailed process of the module. This module
determines the most appropriate HOI design for the given intent.
To this end, we first link the intent to a key metric through the
Metric Selector, and then apply the corresponding decision mode in
the HOI Design Mapper to produce the final mapping.

5.3.1 Metric Selector (Figure 9-A). This module interprets the de-
signer’s intent and maps it to one of four metrics (Realism, Usability,
Efficiency, and Challenge), defaulting to Preference when no clear
match is found. To prevent overfitting, we adopted a strict keyword-
based framework: intents are mapped to a metric only when they
explicitly include associated terms (e.g., “realistic physics” → re-
alism, “easy for beginners” → usability). The complete keyword
list is provided in Appendix C.3. Efficiency was further anchored
to task-related terms such as speed, accuracy, or error rate, consis-
tent with our performance measures (Sec. 4.4.3). This ensures that
Preference remains the default when ambiguous signal is present.

5.3.2 HOI Design Mapper (Figure 9-B). This module integrates the
findings from Section 4.5. It applies ranking-based decisions for
Preference, Realism and Usability, and binary decisions for Efficiency
and Challenge. The choice of decision mode is determined by the
selected metric from Metric Selector.

Figure 9: The detailed workflow of the HOI mapping module
in HOICraft. (A) Metric Selector interprets the target user
experience and assigns it to one of five metrics. (B) HOI De-
sign Mapper determines a ranked list for HOI designs based
on selected metric, using (B-1) ranking-based decision for
Preference, Usability, and Realism and (B-2) binary decision
for Efficiency and Challenge. The top-1 result is applied by
default, while the top-𝑁 list supports further exploration.

• Ranking-based Decision (Figure 9-B-1). This mode be-
gins bymatching the given part to themost similar part in the
dataset. Since our dataset was constructed to capture distinc-
tive part characteristics, the system selects a single topmatch.
The matching criteria include gesture type, physical scale,
motion constraints, and control granularity, all of which
shape user preferences at the part level (Sec 4.4.2). To capture
these nuances, the system employs an LLM-based approach
rather than simple text similarity. Once the system identifies
the best matching part, it retrieves ranking data for selected
metric and draws initial candidates from the top-ranked tiers
(e.g., Cinit = {𝐶𝐴,𝐶𝑀,𝐺𝐴};𝐶𝐴 = 𝐶𝑀 = 𝐺𝐴 > 𝐺𝑀 = 𝑃𝑀 ,
Sec 4.4), ensuring that clearly favored groups are prioritized.
The LLM then decides the order within these tiers by leverag-
ing ranking rationales from Section 4. Using this contextual
input, the system produces a prioritized ordering that aligns
empirical findings with the designer’s intent. The output
consists of both a top-1 suggestion for direct mapping and a
top-𝑁 list for flexible design exploration.

• Binary Decision (Figure 9-B-2). In this mode, binary HOI
design choices are encoded into the prompt with decision
rules derived from Section 4.5. GM vs. CM for Efficiency and
GM vs. PM for Challenge are represented as binary options,
and the LLM selects the option that best aligns with the
designer’s intent.

5.4 Authoring Interface
We designed a VR authoring interface that integrates the function-
alities described in the previous sections (Figure 10). The interface
guides designers through four main steps, enabling in-situ author-
ing that balances automation with manual control. Throughout the
workflow, a side panel indicates the current step, and designers can
proceed by clicking the next button at the top.

(1) Input Intent (Figure 10-A), which allows designers to spec-
ify their design intent (intended use of the object and target
user experience) by typing with a virtual keyboard.

(2) Interactive Part Selection (Figure 10-B), which highlights
selected interactive parts (Figure 10-B-3). Designers can re-
fine these either through (1) priority-based selection (Fig-
ure 10-B-1), where selecting a number automatically acti-
vates the corresponding top-ranked parts, or (2) manual
selection (Figure 10-B-2), where parts are directly toggled
on or off. A dropdown menu allows switching between the
two modes.

(3) HOI Design Customization (Figure 10-C), which pro-
vides adjustable parameters (resistance, gesture set, release
distance, animation mode, and step angles) with sliders and
toggles (Figure 10-C-1). Each design can be immediately
tested in-situ (Figure 10-C-2); for example, release distance
is visualized as a surrounding sphere, and other parameters
can be directly manipulated within the VR scene.

(4) HOI Design Mapping (Figure 10-D), which presents a
top-1 recommendation with a brief rationale (Figure 10-D-1).
Designers can also explore top-𝑁 alternatives via a drop-
down menu and refine their choice based on the provided
pros and cons (Figure 10-D-2).
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Figure 10: Interface overview of HOICraft. (A) Intent Input. The system loads the pre-processed object (segmented, labeled, and
motion defined), and designers select the target object using a toggle (A-1). Then, designers specify the intended use of the
object and the target user experience with text input (A-2). (B) Interactive Part Selection. The system selects interactive parts
based on intent, which can be refined through two modes: (B-1) priority-based selection or (B-2) manual selection. Selected
parts are visually emphasized with red highlights (B-3). (C) HOI Design Customization. Designers adjust (C-1) properties and
validate changes in-situ (C-2). (D) HOI Mapping. The system first presents a top-1 recommendation (D-1), while additional
top-𝑁 alternatives with pros and cons are provided for further refinement (D-2).

6 Study 2: Evaluating HOICraft with HOI
Authoring

To evaluate the effectiveness of HOICraft, we conducted a user
study with two main tasks. Task 1 focused on the HOI design rec-
ommendation module in isolation, comparing it against a manual
baseline to assess efficiency and exploration behavior. Task 2 evalu-
ated the full HOI authoring workflow through a usability test and
how all core modules work together in practice.

6.1 Baseline Design
Figure 11-C illustrates the baseline interface. We designed the base-
line condition to reflect how designers would work without auto-
mated support. Here, users tested HOI designs one by one through
trial-and-error and manually choose which to adopt. In contrast,
our system condition provided prioritized recommendations and
rationales based on user preference data. This setup allowed us to
investigate not only whether AI assistance could reduce cognitive
and physical burdens in mapping HOI designs, but also whether
the outcomes were perceived as comparable in quality to manually
created ones.

6.2 Study Setup
We recruited 12 VR interaction designers in the research field (5
female), aged 23 to 30 (𝑀 = 26.08, 𝑆𝐷 = 2.31). Based on a de-
mographics survey, they had VR interaction design/development

Figure 11: Study 2 overview. (A) Task 1: Participants designed
HOIs for six objects to compare the baselinemanualmapping
interface (C) with our recommendation-basedmapping inter-
face (Figure 10). The different object sets (3 objects) were used
for baseline and recommendation conditions with Likert-
scale rating and post-interview. (B) Task 2: Participants used
our system to author HOIs for 4 objects through the full
workflow, followed by a post-task interview.

experience (𝑀 = 2.04, 𝑆𝐷 = 1.17) and Unity development experi-
ence (𝑀 = 2.08, 𝑆𝐷 = 0.99). Each study session lasted about 1.5
hours. The study was approved under the IRB, and participants
received compensation for their time with 15 USD. The hardware
configurations and VR deployment used in the study were consis-
tent with those detailed in Section 4.2. The study consisted of three
phases: (1) Introduction and Training, (2) Task Session, and (3) Post
Interview.
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6.2.1 Introduction and Training. We first collected participants’
demographic information and explained the study tasks. Next, we
introduced each HOI design, and participants were encouraged to
ask questions about them freely, as we assumed they were already
familiar with them. We informed their role was to design HOIs
aligned with specific target user experiences (easy & intuitive, real-
istic, and general preference). We also explained the two interface
conditions: the manual selection (baseline) and recommendation-
based selection (our system). After the explanation, participants
completed a training session with both interfaces. During this ses-
sion, they practiced each HOI design to gain an understanding of its
characteristics. Training continued until participants reported that
they could clearly distinguish among HOI designs and understood
how to operate the interfaces, usually within five minutes.

6.2.2 Task 1: HOI Mapping Comparison. Participants compared the
baseline (manual mapping) with our recommendation-based map-
ping by creating HOIs for 6 objects (3 in the manual condition and 3
in the recommendation condition). Each object set contained differ-
ent levels of complexity based on the number of interactive parts,
including simple (e.g., faucet and syringe), medium (e.g., cabinet
and radio), and complex (e.g., toaster and coffee machine) objects.
In each trial, a target user experience was randomly assigned, and
participants created HOIs aligned with it.

To prevent learning or carryover effects, we prepared two dis-
tinct sets of objects (Set A and Set B). Group 1 completed Set A with
the manual interface and Set B with the recommendation interface,
while Group 2 followed the opposite assignment. Here, the set order
itself was fixed (A before B), as our analyses focused on comparing
interface versions rather than differences across individual objects.
Because both sets included a balanced range of object complexi-
ties and were counterbalanced across conditions, each interface
was equally likely to be tested in the first or second half of the
session. Within each set, the order of objects was randomized to
mitigate local sequence effects. We collected two quantitative mea-
sures, including decision speed (time from mapping initiation to
confirmation) and exploratory count (number of times participants
revised or tested different HOI designs). After completing Task 1,
participants filled out a questionnaire (Table 3).

6.2.3 Task 2: Usability Test. Participants evaluated the overall us-
ability of the HOICraft by completing the full HOI authoring work-
flow: (1) selecting an object and specifying the intended use and
target user experience, (2) selecting object parts to be interactive,
(3) customizing HOI design properties, and (4) finalizing the HOI
mapping. Unlike Task 1, this task focused solely on our system
rather than comparing it with the manual baseline, aiming to as-
sess how well it supports usability and reduces workload. To this
end, participants completed a Likert-scale survey in Table 4 related
to usability and satisfaction as well as the System Usability Scale
(SUS).

6.3 Results
6.3.1 Overall Results for Task 1. A Wilcoxon signed-rank test
showed no significant difference in decision speed between ver-
sions (baseline and ours, 𝑝 = 0.519) as shown in Figure 12-A, in-
dicating that neither interface offered an overall speed advantage.

Table 3: Questionnaires for comparative evaluation between
baseline and HOICraft (Task 1)

Item Questionnaire Answer
Type

1 (Ease of Decision) I felt the HOI mapping process
was intuitive and easy.

Likert
(1-7)

2 (Decision Efficiency) I felt the HOI mapping pro-
cess was efficient.

Likert
(1-7)

3 (Decision Confidence) I am confident in the HOI
mapping decision I made.

Likert
(1-7)

4 (Variety of Considerations) I was able to suffi-
ciently consider multiple factors appropriate for
the intent.

Likert
(1-7)

5 (Outcome Satisfaction) I believe the HOI mapping
decision I made best aligns with the intended user
experience.

Likert
(1-7)

Table 4: Questionnaires for HOI authoring evaluation (Task
2)

Item Questionnaire Item Answer
Type

1 (Interactive Part Selection) The priority list pro-
vided by the system was helpful in deciding which
part to be interactive.

Likert
(1-7)

2 (HOI Design Mapping) The rationale provided by
the system was useful in making a decision.

Likert
(1-7)

3 (HOI Design Mapping) The recommendations
aligned well with my intended user experience.

Likert
(1-7)

4 (Authoring) The tool helped me make effective
design decisions for diverse intents.

Likert
(1-7)

5 (HOI Design Customization) The customization
is effective to fine-tune HOI design to match my
intent.

Likert
(1-7)

6 (Outcome Satisfaction) I am satisfied with the qual-
ity of the outcome that I created.

Likert
(1-7)

7 (Workflow Satisfaction) I am satisfied with the
overall VR HOI design workflow.

Likert
(1-7)

This reflects a trade-off: the manual interface involved more initial
trial-and-error, but participants quickly formed internal rules to
speed decisions (P1, P3, P9). In contrast, the recommendation-based
interface reduced options but required extra time to read and eval-
uate rationales. Although speed did not differ in this controlled
setting, participants agreed the recommendation-based interface
would provide clear advantages at scale. They emphasized that
with more design elements, the recommendation-based interface’s
ability to prune irrelevant options would be invaluable, making it
the preferred approach for complex projects (P1, P4–9, P11–12).

A Wilcoxon signed-rank test on exploratory counts showed a
significant reduction with our system compared to the manual
baseline (𝑝 < .001) as shown in Figure 12-B. This indicates that
our system reliably prunes irrelevant options, reducing the need
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Figure 12: Comparison of (a) decision speed, (b) exploratory count, and (c) Likert questionnaire across Baseline and Ours :
**** 𝑝 < 0.001.

for extensive search. Participants highlighted that this filtering
substantially eased both cognitive and physical load (P12), allowing
them to focus on a smaller set of high-quality choices (P11). They
also noted that the system effectively eliminated options they would
have dismissed anyway (P4, P5, P8), which streamlined the process
and supported a more consistent decision-making approach.

Overall, the subjective ratings collected via Likert scales showed
no significant differences between the baseline and our mapping
module across all five categories (Ease of Decision, Decision Effi-
ciency, Decision Confidence, Variety of Considerations, and Out-
come Satisfaction) as shown in Figure 12-C. This finding indicates
that an automated, data-driven mapping approach can yield out-
comes perceived as comparable in quality to those produced manu-
ally. Participants described the recommendations as “appropriate”
and rarely in need of changes, noting that they often validated
their own intentions (P4, P9) and were especially helpful when
design goals were ambiguous (P9, P12). These results suggest that
our system does not replace designer expertise but complements
it, offering reliable guidance and effective HOI designs. This is par-
ticularly valuable when manual methods are difficult or designer
experience is limited.

These results show that while the decision speed of HOICraft
was similar tomanual design, it significantly reduced trial-and-error
exploration and cognitive burden. Based on Likert-scale ratings, the
outcomes were perceived as comparable to those created manually,
indicating that the system captured many of the same considera-
tions designers applied in their decisions. Designers were able to
produce comparable HOI design results with less effort, underscor-
ing the system’s value as a supportive tool that enables mappings
closer to expert-level outcomes. By reducing both cognitive and
physical workload, HOICraft not only broadens access to effective
HOI authoring but also enhances overall productivity.

6.3.2 Overall Results for Task 2. Figure 13 presents the overall
results for Task 2. We asked Likert-scale responses related to our
core modules to assess the usability of HOICraft.

Interactive Part Selection (Q1). Participants rated automated
part selection as efficient and well-aligned with their intent (𝑄1 :
𝑀 = 5.81, 𝑆𝐷 = 1.25). They valued how the system filtered out less
critical parts, especially for complex objects (P1, P3, P5, P8, P9, P12).
P1 remarked, “The parts suggested at the start were exactly the ones I
was thinking of. I don’t need any change,” and P3 added, “The initial
recommendations were helpful and matched my intent; it also felt
like the number of parts was chosen by importance.” However, when
designers had very specific goals, the system sometimes missed
their intent, highlighting the need for hybrid use with manual
refinement (P2, P7).

HOI Mapping Module (Q2-Q4). Feedback on the recommen-
dation and rationale system was highly positive. The recommenda-
tions aligned well with participants’ intended user experience (𝑄3 :
𝑀 = 5.54, 𝑆𝐷 = 1.36), validating both the system’s effectiveness
and their own design goals (P4, P8, P9, P11). The rationale further
supported decision-making (𝑄2 : 𝑀 = 5.36, 𝑆𝐷 = 1.43), with some
noting it was useful even when diverging from their initial intent,
as it clarified the system’s logic and built trust (P2, P5). Together,
accurate recommendations and clear rationales enabled effective
design decisions across diverse intents (𝑄4 : 𝑀 = 6.27, 𝑆𝐷 = 1.00).
This was especially valuable when designers’ goals were not fully
formed, as the system guided them toward solutions they might
not have considered (P9).

Critical Role of Customization (Q5). Customization was con-
sidered as essential (𝑄5 : 𝑀 = 6.09, 𝑆𝐷 = 1.37). Adjusting parame-
ters like resistance or step angle was key to achieving realism and
creative control, with participants noting it expanded the range
of possible interactions (P2, P7, P9, P11). This feature enabled de-
signers to tailor the system’s output to their specific needs. As one
participant noted, “Just by customizing the HOI design in this way, it
seems like I could implement countless interactions” (P2), suggesting
that customization not only refined results but also unlocked broad
design possibilities.

Satisfaction (Q6-7) & SUS. Participants reported high satis-
faction with both the outcomes (𝑄6 : 𝑀 = 6.0, 𝑆𝐷 = 0.89) and
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Figure 13: Overall distribution of Likert-scale responses for the usability test. Results show the frequency of responses across
all questionnaires.

the overall workflow (𝑄7 : 𝑀 = 6.27, 𝑆𝐷 = 0.64). They valued
intent input as a strong starting point (P4, P11), the efficiency of
automated part recommendations (P3), and the ability to customize
and test interactions in-situ, which enhanced both satisfaction and
creativity (P5, P10). Even when suggestions did not perfectly align
with their goals, participants described them as reasonable compro-
mises that supported decision-making (P2, P5). Overall, the ability
to refine and validate designs directly in VR made the workflow
concise and efficient (P10). The system also achieved a strong SUS
score (𝑀 = 81.04, 𝑆𝐷 = 13.75), confirming its perceived usability.

7 Discussion
Here, we reflect on the findings from the design and evaluation
of HOICraft and discuss lessons learned as well as directions for
future AI-assisted HOI authoring tools.

Guiding Scaffold in Ambiguous Contexts. When design intent was
vague or incomplete, participants highlighted that HOICraft served
as a valuable scaffold to support decision-making. Instead of forcing
users to resolve uncertainty by themselves, the system’s capability
of providing pros and cons alongside a recommended option set
encouraged confidence. One participant explained, “Seeing the pros
and cons and then a filtered set of options helped me make choices
when the goal itself wasn’t very clear—like with general preference or
easy & intuitive” (P12). Similarly, another remarked, “For something
like general preference, the criteria felt ambiguous, so I tended to
follow the recommendations” (P9). These reflections suggest that
HOICraft was not only supporting decision-making, but also further
providing design insights. Such scaffolding was especially seen as
valuable in the early stages of interaction design.

Supporting Novices and Experts Across the Design Spectrum. The
main strength of HOICraft lay in efficiency, serving as a bridge
across different levels of expertise, supporting novices when choices
feel difficult and relieving experts from repetitive effort. For novices,
the recommendations simplified decision-making by narrowing

down options and highlighting the most meaningful distinctions: “It
reduced the factors I needed to consider, like whether to choose contact
or gesture. It feels more efficient” (P11). Similarly, P4 noted that
the recommendations made comparisons easier, which simplified
the process. This support often made it possible for beginners to
decide with a confidence closer to expert decision-making: “After I
got to know how HOIs work, I could first imagine the result of HOI
and then test it. But with the recommended list already matching
my expectations, I felt more confident. So I thought, especially for
beginners, this makes it easier to decide like an expert” (P7).

For experienced designers, the value of HOICraft lay in reducing
effort and accelerating iteration. Even with strong intuitions about
HOI designs, the filtering process spared them from unnecessary
comparisons and tedious repetitions. As one participant explained,
“Even when I already knew how each HOI worked, it was convenient
that the system excluded the less relevant ones, so I could pick more
easily from the remaining set” (P5). Another participant noted how
this sped up iteration, allowing them to refine designs quickly
without exhaustively checking every possibility (P8). These findings
suggest that recommendations can flexibly support designers at
different stages: mitigating uncertainty and aiding decision-making
for novices, while reducing the burden of exploration for experts.
This dual role underscores the potential of AI-assisted authoring
tools to adaptively enhance both learning and productivity across
the spectrum of design expertise.

Encouraging Diverse Perspectives. Beyond efficiency, participants
valued how HOICraft encouraged them to reconsider their assump-
tions and explore alternatives they might not have otherwise con-
sidered. Unlike the baseline, where decisions were made in isola-
tion, the system felt more like a collaborative partner—prompting
reflection and sometimes compromise, similar to discussing de-
sign choices with teammates. One participant explained, “I initially
thought CM would be better, but when the system recommended
physics, I started wondering why. Then I realized that subtle effects
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Figure 14: Potential and limitation of SOTA automatic preprocessing. Segmentation using PartField [52] isolates primary
components but fails to capture fine-grained functional parts. Labeling via VLM-based approaches [64, 83] accurately assigns
basic names (e.g., button, handle) but struggles to identify specific functional semantics. Motion constraint inference using
Articulate AnyMesh [64] identifies plausible joint types (e.g., rotation) but fails to determine precise motion axes.

like gravity could make it more appropriate. It made me pause and
rethink, like a filter on my own decisions” (P2). Participants also de-
scribed how unexpected suggestions exposed them to options they
had overlooked, “I thought gesture-based was the obvious choice, but
the system pushed me to try something different, which turned out
better than I expected” (P8). Similarly, others appreciated how the
pros-and-cons presentation revealed trade-offs they hadn’t noticed,
“I hadn’t really considered contact vs. physics, but seeing the com-
parison made me realize the differences, and some options I thought
were weak weren’t actually bad” (P12). Together, these reflections
highlight the system’s role in broadening design perspectives and
viewpoints to enable designers to break from habitual choices and
foster innovative outcomes.

Trade-Off between Design Flexibility and System Guidance. Our
findings highlight the importance of flexibility in accommodating
diverse designer working styles. Some participants with a strong
and clear design vision preferred the manual baseline, as it allowed
them to directly execute the choices they already had in mind
without interference: “I already had a candidate in my head, so I
found the baseline more straightforward” (P1). In contrast, others
valued the efficiency of automated pruning, especially when faced
with numerous options to choose from. They noted that it helped
reduce effort and mental load, “When parts increase, the system
filtering is far more efficient—it saves me from trying everything one
by one” (P11).

A central design trade-off emerged around the system’s exclu-
sion process. While a few participants felt constrained when their
preferred option was filtered out (“Sometimes what I wanted wasn’t
there, which was frustrating” (P8)), most appreciated the pruning,
as it allowed them to focus on a smaller, high-quality set of choices
(“It simplified what I had to consider and let me pay more attention to
details” (P11)). These mixed reactions suggest that future systems
should provide configurable levels of control. For instance, offering
both a lightweight recommendation mode for quick decisions and a
more exclusionary mode for curated and high-confidence guidance.

Another limitation participants noted was the difficulty of artic-
ulating design intent in free-text form. Abstract concepts such as
“intuitive” or “realistic” were sometimes challenging to express, “It
was hard to put intent into words directly” (P3). Providing predefined
intent presets or keywords could reduce this burden, particularly
for novice designers or when the design goals are underspecified.
Such presets could serve as starting points, which designers refine
further, ensuring the system captures their intent while maintaining
efficiency.

8 Limitations and Future Work
Handling Complex Interactions. In this work, we mainly evalu-

ated interactions with prismatic and revolute joints (translation
and rotation), as these serve as the majority of everyday articulated
behaviors in VR interactions [13, 54, 64]. Still, we plan to further
support unconventional interactions involving irregular geometries
and multi-part coordination to broaden the system’s scope to more
complex articulated interactions. Specifically, for complex kinemat-
ics derived from irregular geometries, our current framework can
be extended beyond 1-DoF movement by configuring motion con-
straints to accommodate multiple axes. For multi-part coordination,
future work can integrate computational mechanism design [14, 16]
to model interdependent translations and rotations. This expan-
sion would significantly strengthen the system’s applicability to a
broader range of high-fidelity object types.

3D Object Preprocessing. Our framework relies on preprocessed
objects (segmented, labeled, and with defined motion constraints)
to ensure interaction design workflows remain unaffected by ar-
tifacts arising from preprocessing. Still, we further investigated
prospective directions for a scalable pipeline that encompasses
automatic preprocessing. Recent advances in segmentation [52],
VLM-based labeling [64, 83], and articulation inference [13, 54, 64]
show promising capabilities. As shown in Figure 14, our prelim-
inary investigation showed that these methods can successfully
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generate useful initial proposals for structural and semantic map-
ping. However, challenges remain for future work, such as handling
fine-grained parts in segmentation, identifying specific semantics in
labeling, and determining precise parameters formotion constraints.
Therefore, we envision a short-term hybrid approach where au-
tomatic systems provide a structural draft, allowing designers to
efficiently validate and fine-tune the results through in-situ manual
refinement. In the long term, the rapid evolution of 3D foundation
models (e.g., SAM 3D [59]) and advanced articulation inference
have potential to resolve remaining issues, paving the way for a
fully automated pipeline.

Extension to XR environments. While HOICraft is currently im-
plemented in VR, the core framework of adapting interaction me-
chanics to designers’ intent remains critical for broader XR contexts.
Since XR environments frequently utilize purely virtual elements,
defining their interaction mechanics in accordance with user goals
(e.g., precision vs. ease) remains a fundamental requirement. How-
ever, applying these mechanics in XR must also take into account
real-world constraints. Therefore, future work will integrate our
intent-driven logic with XR’s environmental awareness capabilities
(e.g., spatial mapping) to create a system that respects physical
boundaries while dynamically optimizing virtual behaviors.

Adaptability to Diverse Platforms. Our HOI mapping module is
designed to be platform-agnostic, operating soley on designers’
intent and object attributes rather than runtime-specific inputs.
While our current execution layer is implemented using Meta’s
API, this layer can be adapted to any XR runtime (e.g., OpenXR,
MRTK) that supports hand tracking. Future work will extend the
execution layer into a modular framework, allowing the system to
support diverse runtime setups.

9 Conclusion
We present HOICraft, an AI-assisted authoring tool that reasons
3D objects as part-level interactive components in VR. HOICraft
integrates three core functions: Interactive Part Selection, HOI De-
sign Customization, and HOI Design Mapping. From our formative
study, we derived five representative HOI designs and identified
key metrics influencing their use. A data collection study then
captured user preferences, informing the mapping module. The
final user study that evaluates HOICraft showed that although
decision speed was comparable to manual workflows, HOICraft
significantly reduced trial-and-error exploration and cognitive load.
Designers achieved outcomes perceived as similar in quality to
manual results, with less effort. Participants emphasized the value
of automated part selection, ranked recommendations with ratio-
nales, and customization for refining HOI mappings. In summary,
HOICraft demonstrates how AI can complement expertise, serving
as both a practical assistant and a design partner for HOI authoring.
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A Object-Part Dataset
The object dataset for the formative study consisted of 20 everyday objects with articulated parts, selected to cover a broad range of
affordances and motion types: laptop, scissors, drawer, syringe, cutter knife, stapler, door knob, faucet, spray bottle, dispenser, microwave,
espresso machine, game controller, globe, mouse, kettle, camera, can, drill, and lightbulb. As shown in Figure 15, these objects exhibit a
balanced distribution across both size (0–5, 5–10, 10–20, and >20 inches) derived from Amazon5, and shape categories (equant, prolate,
oblate, bladed, and other) [5, 90], ensuring diversity in geometry and interaction styles.

From the formative study, we adopted the game context decomposition as the standard for object–part candidates, as it provided
manageable part-level tasks aligned with our study goals. In contrast, training contexts often produced overly detailed decompositions,
while social contexts typically resulted in minimal whole-object interactions.

Figure 15: The distribution of objects on the (A) size and (B) shape.

B Tables for Likert Scale (Usability, Realism)
The following tables present key quantitative data from the Likert-scale responses in Section 4, including Friedman test results with Kendall’s
W and ranking significance. Methods are ordered by their mean scores (for Likert scales, higher values indicate better performance; for rank
data, lower mean ranks indicate better performance). We then derived statistically informed groupings: methods not significantly different
were grouped together (“=”), while significant differences formed a new, lower-ranked group (“>”). If the Friedman test was not significant,
all methods were treated as tied.

For Usability, we focused on Ease of use and Learnability as key factors. The results show largely consistent top tiers across the two,
except for Part1 and Part5. To ensure flexibility, we adopted the data source that included more candidates in the top tier as the primary
ranking measure for Usability.

5https://www.amazon.com/

https://www.amazon.com/
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Table 5: Ease of Use results (Friedman test with Kendall’s W). Significance levels are indicated: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.005,
**** 𝑝 < 0.001).

𝑛 = 20, 𝑘 = 5
Part Kendall’s W Friedman_sig Ranking_sig
1 0.3715 p<0.001**** CA=GA>CM=GM>PM
2 0.1883 p=0.009** CM=CA>GM=GA=PM
3 0.0948 p=0.155 GM=CM=GA=CA=PM
4 0.2135 p=0.002*** CM=CA>GM=GA>PM
5 0.1526 p=0.050 CM=GM=CA>GA=PM
6 0.1331 p=0.050 CM=GM=CA=GA>PM
7 0.2266 p=0.002*** CM=CA=PM>GM=GA
8 0.3385 p<0.001**** CA=GA=GM=CM>PM
9 0.0067 p=0.969 GM=CM=CA=PM=GA
10 0.1724 p=0.010* CM=PM>GM=CA>GA
11 0.2048 p=0.003*** CM=CA=GA>PM=GM
12 0.0364 p=0.969 CM=PM=CA=GM=GA
13 0.0872 p=0.594 CA=GA=CM=PM=GM

Table 6: Learnability results (Friedman test with Kendall’s W). Significance levels are indicated: * 𝑝 < 0.05, ** 𝑝 < 0.01, ***
𝑝 < 0.005, **** 𝑝 < 0.001).

𝑛 = 20, 𝑘 = 5
Part Kendall’s W Friedman_sig Ranking_sig
1 0.2153 p=0.004*** CA=GA=CM>GM=PM
2 0.1335 p=0.049* CM=CA>GM=GA=PM
3 0.0882 p=0.432 GM=CM=GA=CA=PM
4 0.1573 p=0.019* CM=CA>GM=GA=PM
5 0.1515 p=0.035* CM=GM=CA=GA>PM
6 0.1742 p=0.008** CM=GM=CA=GA>PM
7 0.2311 p=0.001*** CA=CM=PM>GM=GA
8 0.3224 p<0.001**** CA=GM=GA=CM>PM
9 0.0226 p=0.771 PM=CM=GM=GA=CA
10 0.1529 p=0.020* CM=PM>GM=CA=GA
11 0.1675 p=0.010* CA=CM=GA>PM=GM
12 0.0828 p=0.771 PM=CM=CA=GM=GA
13 0.0597 p=0.771 CA=CM=GA=GM=PM

Table 7: Realism results (Friedman test with Kendall’s W). Significance levels are indicated: * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.005,
**** 𝑝 < 0.001).

𝑛 = 20, 𝑘 = 5
Part Kendall’s W Friedman_sig Ranking_sig
1 0.3276 p<0.001**** CM=GM>PM=GA=CA
2 0.3334 p<0.001**** CM=GM>CA=PM=GA
3 0.4229 p<0.001**** CM=GM=PM>CA=GA
4 0.4031 p<0.001**** CM>GM=PM=CA>GA
5 0.2383 p<0.001**** CM=GM>PM=CA=GA
6 0.3613 p<0.001**** CM=GM=PM>CA=GA
7 0.1421 p=0.073 CM=CA>GM=PM>GA
8 0.2610 p<0.001**** GM=CM>CA=GA=PM
9 0.4006 p<0.001**** GM=CM=PM>GA=CA
10 0.5383 p<0.001**** CM=PM>GM=CA>GA
11 0.2354 p<0.001**** CM=CA>GM=PM=GA
12 0.3019 p<0.001**** CM=GM=PM>CA=GA
13 0.1678 p=0.013* CM=GM=PM=GA>CA
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C System Prompts
We provide the system prompts for each module in HOICraft in this section. We prompted the GPT-4o with a temperature of 0.2 across all
modules.

C.1 Object Analyzer
Task: Given an object schema (or description), return each part as one line in the format:

Rules:
- Interaction Type is the most typical action (e.g. Rotate, Click, Slide, Toggle).
- Affordances are the primary functions that parts provide to users.
- No extra text, just the lines.

### Input Format
Object: Object Name
Parts: Part Name1, Part Name2, ...

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.

[
{
"object": "objectName",
"part": "partName",
"interaction_type": "interactionType",
"affordances": "affordance"

},
...

]

C.2 Part Prioritizer

Given an object with defined parts, a user intent, and constraints, decide:
1. The priority order of parts (skip the body).
2. A recommended initial complexity level based on intent/constraints.

The complexity level works as follows:
Level 1 = first (top) part only.
Level N (N >= 1) = top N parts.
Max level = number_of_parts.
The object body is implicit and excluded from level math.

### Input Format
{
"intent": "<user_defined_intent>",
"parts": [
{"id": "part_id_1", "affordances": "part1_affordance"},
{"id": "part_id_2", "affordances": "part2_affordance"},
{"id": "part_id_3", "affordances": "part3_affordance"}

]
}

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.
{
"priority_parts": ["part_id", "part_id", ...],
"initial_level": selectedInteractionLevel,
"rationale": "Explain in one or two sentences (max 150 characters) why this order and level match the intent."

}

C.3 Metric Selector
Augmentation with Recommendation Metric We prompted the LLMs (Claude-Sonnet-4-20250514 and GPT-4o) with a temperature of
0.7 to augment the recommendation metric, and combined their outputs while removing redundancy.
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System Prompt Metric / Synonyms
Generate 15 synonyms or alternative
terms for the given word in VR object
interaction context. One word per line,
maximum 1–2 words without
numbering and explanations. All
outputs must be adjectives only,
without adverbs like “highly” or “very”.

Realism: Realistic, Lifelike, Authentic, Natural, Detailed, Immersive, Convinc-
ing, Credible, Believable, Vivid, True-to-life, Photorealistic, Faithful, Genuine
Usability (Ease of Use, Learnability): Intuitive, Accessible, User-friendly,
Navigable, Comprehensible, Effortless, Simple, Streamlined, Clear, Approach-
able, Responsive, Comfortable
Challenge: Demanding, Complex, Challenging, Intense, Skillful, Reward-
ing, Testing, Strenuous, Satisfying, Motivating, Intricate, Mastery-focused,
Accomplishment-driven, Stimulating, Engaging

### Goal: Read the intent and decide which evaluation metrics should be prioritized among: realism, usability, preference, efficiency, challenge.

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.
You must return the result in the following strict format:
[
{"part": part, "metric": metric, "reason": reason},
{"part": part, "metric": metric, "reason": reason},

]

### Input Format: intent: [interactive parts] and [user intent text]

### Strict Keyword-Based Decision Rules:

**REALISM**: Select ONLY if intent contains explicit realism keywords: Realistic, Lifelike, Authentic, Natural, Detailed, Immersive, Convincing,
Credible, Believable, Vivid, True-to-life, Photorealistic, Faithful, Genuine

**USABILITY**: Select ONLY if intent contains usability keywords: Intuitive, Accessible, User-friendly, Navigable, Comprehensible, Effortless,
Simple, Streamlined, Clear, Approachable, Responsive, Comfortable

**EFFICIENCY**: Select ONLY if the intent emphasizes quantitative performance of the interaction.
This includes references to task completion time, execution accuracy, error/reversal counts, or performance-related terms such as speed,

responsiveness, low latency, and smooth task flow.

**CHALLENGE**: Select ONLY if intent contains challenge keywords: Demanding, Complex, Challenging, Intense, Skillful, Rewarding, Testing,
Strenuous, Satisfying, Motivating, Intricate, Mastery-focused, Accomplishment-driven, Stimulating, Engaging

**PREFERENCE**: Select if: - lacks clear keywords for the above three metrics - OR expresses subjective desires, or individual taste

### Priority Order:
1. Check for explicit REALISM keywords first
2. Check for explicit USABILITY keywords second
3. Check for explicit EFFICIENCY keywords third
4. Check for explicit CHALLENGE keywords fourth
5. Default to PREFERENCE for all other cases

### Examples:
- "I want realistic physics" - realism (contains "realistic")
- "Make it easy for beginners" - usability (contains "easy", "beginners")
- "Need fast response times" - efficiency (contains "fast")
- "I want to master a difficult skill" - challenge (contains "master", "difficult")
- "I want something that feels right for my workflow" - preference (semantic: personal satisfaction)

C.4 Matching Similar Part

### Matching criteria:
1. Gesture/Interaction Type: Match the required hand pose and motion (e.g., pinch, grab, twist, slide, push, pull, tap, press).
2. Physical Shape & Size: Classify the required movement scale (e.g., small movements like finger or wrist control vs. large movements like arm

control). Note the presence of a graspable handle.
3. Motion Constraints: Determine if the motion is rotational or linear, and if it's bounded or unbounded.
4. Control Granularity: Identify if the action is a continuous adjustment (fine control, variable range) or a discrete/binary action (on/off,

open/close, stepwise).

### Input Format
You will receive a list of object parts in the format:
[ObjectName-PartName-Interaction Type]

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.
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You must return the result in the following strict format:
[
{"part": "PartName", "id": MatchedPartId , "matchedPart" : "MatchedPartName"}, ...

]

### Rules
- Return exactly **1 best match** per input part.
- Use only the provided **Given Object List** for matching.
- Each match must return its original number (id) from the list along with the name.
- Do not include explanations or any extra text.
- The "part" field must include only the PartName from the input (e.g., from "Padlock-Dial-Rotate", use only "Dial").
- The number of output objects must equal the number of input parts. Never return all items from the Given Object List.

### Given Object List
1. Laptop-Hinge - Rotating hinge for opening/closing the screen
2. Scissors-Handle - Looped finger grips for squeezing the blades
3. CutterKnife-BladeSlider - Thumb slider that adjusts blade length
4. Stapler - Press-down mechanism that drives a staple
5. Doorknob-Lever - Lever rotated to unlatch/open the door
6. SprayBottle-Trigger - Finger-squeezed trigger that releases mist
7. PumpBottle-PumpHead - Press-down pump head that dispenses liquid
8. Microwave-Door - Hinged door pulled to access the chamber
9. Microwave-Dial- Flat Rotatable-button for function control
10. Globe-Sphere - Rotatable sphere for exploration/navigation
11. Camera-ShutterButton - Index-finger button for capturing images
12. Padlock-Combination Dial - Rotating numbered dial for combination input
13. Padlock-Shackle - U-shaped bar that lifts when unlocked

C.5 HOI Mapper Based on Ranking-based Decision

### Input Format
1. A set of candidate HOIs (already statistically significant).
2. Raw participant comments describing pros and cons of each HOI.
3. A user intent describing how the object should be used in VR.

### Your task:
1. Rank the candidate HOIs from most to least appropriate based on the user's intent.
2. For each ranked HOI, justify its position by summarizing the most relevant participant comments into keywords for pros and cons.
**Do not include participant IDs (e.g., P1, P2) and words "participant(s)".**
**Instead, present the reasoning directly as neutral evidence (e.g., "This technique is convenient and requires less effort...").**
3. Use only the provided candidates (e.g., PM, GM, GA). Never recommend excluded HOIs.
4. Assign higher weight to evidence directly linked to the intent's priority.

There are five available HOI techniques:
1. Physics-based Manipulation (PM)
The user's hand collider directly collides with the object's collider.
The object moves according to game engine's physical interaction.

2. Gesture-based Manipulation (GM)
The user performs a gesture near the object (e.g., grab, pinch).
The object then follows the user's hand movement.

3. Gesture-based Animation (GA)
The user performs a gesture near the object (e.g., grab, pinch).
Instead of following the hand, the object moves automatically along a predefined animation created by the developer.

4. Contact-based Manipulation (CM)
When the user's hand approaches the object, the object snaps and follows the hand's movement. No explicit gesture is required.

5. Contact-based Animation (CA)
When the user's hand approaches the object, the object automatically executes a predefined animation created by the developer. No explicit

gesture is required.

Provide the result strictly in the JSON format below.

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.
[
{
"rank": 1,
"choice": "PM|GM|GA|PM|PA",
"rationale": "A 1-2 sentence rationale explaining why this HOI is the top choice. (max 150 chars)",
"keywords": {
"pros": ["Pro keyword 1", "Pro keyword 2"],
"cons": ["Con keyword 1", "Con keyword 2"]
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}
},
{
"rank": 2,
"choice": "PM|GM|GA|PM|PA",
"rationale": "A 1-2 sentence rationale explaining why this HOI is the second choice. (max 150 chars)",
"keywords": {
"pros": ["Pro keyword 1", "Pro keyword 2"],
"cons": ["Con keyword 1", "Con keyword 2"]

}
}

]

C.6 HOI Mapper Based on Binary Decision

There are three available HOI techniques:
1. Physics-based Manipulation (PM)
The user's hand collider directly collides with the object's collider.
The object moves according to game engine's physical interaction.

2. Gesture-based Manipulation (GM)
The user performs a gesture near the object (e.g., grab, pinch).
The object then follows the user's hand movement.

3. Contact-based Manipulation (CM)
When the user's hand approaches the object, the object snaps and follows the hand's movement. No explicit gesture is required.

### Decision Rules:
1. If the primary metric is Efficiency:
If the intent focuses on precision (fine-tuning, delicate actions) and control, select GM.
If the intent focuses on speed (fast actions, minimal effort) and is easy, select CM.

2. If the primary metric is Challenge:
If the sub-intent is focused on mastery and skill development, select GM.
If the sub-intent is focused on realistic difficulty and natural resistance, select PM.

### Input Format:
primary_metric: [Efficiency | Challenge] intent: [user's intent text]

### Output Format
Note: The JSON output will be provided directly, without being enclosed in a code block.
[
{
"rank": 1,
"choice": "PM|GM|CM",
"rationale": "A 1-2 sentence rationale explaining why this HOI is the top choice.",
"keywords": {
"pros": ["Pro keyword 1", "Pro keyword 2"],
"cons": ["Con keyword 1", "Con keyword 2"]

}
},
{
"rank": 2,
"choice": "PM|GM|CM",
"rationale": "A 1-2 sentence rationale explaining why this HOI is the second choice.",
"keywords": {
"pros": ["Pro keyword 1", "Pro keyword 2"],
"cons": ["Con keyword 1", "Con keyword 2"]

}
}

]
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